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In our previous article [1], we derived the following
essential relationship regarding the electronic states of
a diatomic molecule:

 

(1)

 

(Eq. (15a) of Part 1), according to the definitions given
below. 

 

T

 

 is the classical period of time (in the given
electronic state); 

 

R

 

 is the internuclear distance (in this
state); 

 

�

 

0

 

 is the reduced mass; 

 

m

 

e

 

 is the electron mass;

 

g

 

 is a Lorentz-invariant, dimensionless constant
depending only on the electronic structure of the mole-
cule, somewhat characterizing how tight the bond is; 

 

n

 

1
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and 

 

n

 

2

 

 are the principal quantum numbers of the bond
electrons; and 

 

h

 

 is Planck’s constant. Herein, we will
first of all elaborate on the quantum numbers 

 

n

 

1

 

 and 

 

n

 

2

 

,
chiefly based on Eq. (9a) of Part 1. Note that not much
has been reported about the quantum numbers to be
associated with the electronic excited states of a com-
plex system [2, 3]. In any case, seemingly nothing sim-
ilar has been achieved along the line we will present
herein.

Below, first we develop a framework that will allow
us to handle the problem. Then, we work out the quan-
tum numbers for electronic states configured similarly,
as well as for electronic states not configured similarly.
Our approach will consequently lead to the proof of an
empirical relationship known since 1925 but not under-
stood until now. We provide an application on the basis
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Abstract

 

—In our previous article, we arrived at an essential relationship for 

 

T

 

, the classical vibrational period

of a given diatomic molecule, at the total electronic energy 

 

E

 

; i.e., 

 

T

 

 = [4

 

π

 

2

 

/( )] , where 

 

�

 

0

 

is the reduced mass of the nuclei; 

 

m

 

e

 

 is the mass of the electron; 

 

R

 

 is the internuclear distance; 

 

g

 

 is a dimension-
less and relativistically invariant coefficient, roughly around unity; and 

 

n

 

1

 

 and 

 

n

 

2

 

 are the principal quantum
numbers of electrons making up the bond(s) of the diatomic molecule, which, because of quantum defects, are
not integer numbers. The above relationship holds generally. It essentially yields 

 

T

 

 ~ 

 

R

 

2

 

, for the classical vibra-
tional period versus the square of the internuclear distance in different electronic states of a given molecule,
which happens to be an approximate relationship known since 1925 but not understood until now. For similarly
configured electronic states, we determine 

 

n

 

1

 

n

 

2

 

 to be 

 

R

 

/

 

R

 

0

 

, where 

 

R

 

 is the internuclear distance in the given elec-
tronic state and 

 

R

 

0

 

 is the internuclear distance in the ground state. Furthermore, from the analysis of H

 

2

 

 spec-
troscopic data, we found out that the ambiguous states of this molecule are configured like alkali hydrides and
Li

 

2

 

. This suggests that, quantum mechanically, on the basis of an equivalent H

 

2

 

 excited state, we can describe
well, for example, the ground state of Li

 

2

 

. On the basis of this interesting finding, herein we propose to associate
the quantum numbers 

 

n

 

1

 

 and 

 

n

 

2

 

 with the bond electrons of the ground state of any diatomic molecule belonging
to a given chemical family in reference to the ground state of a diatomic molecule still belonging to this family
but bearing, say, the lowest classical vibrational period, since 

 

g

 

, depending only on the electronic configuration,
will stay nearly constant throughout. This allows us to draw up a complete systematization of diatomic mole-
cules given that 

 

g

 

 (appearing to be dependent purely on the electronic structure of the molecule) stays constant
for chemically alike molecules and 

 

n

 

1

 

n

 

2

 

 can be identified to be 

 

R

 

0

 

/

 

R

 

00

 

 for diatomic molecules whose bonds are
electronically configured in the same way, 

 

R

 

00

 

 then being the internuclear distance of the ground state of the
molecule chosen as the reference molecule within the chemical family under consideration. Our approach dis-
closes the simple architecture of diatomic molecules, otherwise hidden behind a much too cumbersome quan-
tum-mechanical description. This architecture, telling how the vibrational period of time, size, and mass are
determined, is Lorentz-invariant and can be considered as the mechanism of the behavior of the quantities in
question in interrelation with each other when the molecule is brought into uniform translational motion or
transplanted into a gravitational field or, in fact, any field with which it can interact. 
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of spectroscopic data of the H

 

2

 

 molecule. A new sys-
tematization of all diatomic molecules will follow.

HOW TO HANDLE THE PROBLEM

The presence of quantum numbers in Eq. (1) is
immediately induced by the identification of the right-
hand side of Eq. (2) of Part 1 as 

 

h

 

2

 

. This equation is fur-
ther transformed into Eq. (9b) of Part 1, written for the
mere electronic description of the molecule (cf. Eq. (4)
of Part 1); i.e.,

 

(2)

 

(Eq. (9b) of Part 1), according to the definitions given
below. 

 

E

 

n

 

 is the electronic energy in the 

 

n

 

th electronic
state; 

 

R

 

n

 

 is the internuclear distance in the 

 

n

 

th elec-
tronic state; and 

 

g

 

IN

 

 is a Lorentz-invariant, dimension-
less constant (defined in the Appendix of Part 1), also
somewhat characterizing how tight the bond is. The
excited electronic eigenstates of the molecule should
anyway involve quantum numbers.

 

2

 

 The simplicity of
Eq. (2) clearly leaves no room for quantum numbers to
come into play in this equation other than the one right
next to 

 

h

 

2

 

.

Thus, we conclude that a composite quantum num-
ber 

 

N

 

 (i.e., in the case of a diatomic molecule, the prod-
uct of the two principal quantum numbers to be associ-
ated with the bond electrons) should come to multiply

 

h

 

2

 

 in this equation regarding an excited eigenstate in
just the same way that the square of an integer quantum
number related to an excited state of a simple wavelike
object (such as the hydrogen atom) comes to multiply

 

h

 

2

 

. This piece of information means that, when 

 

N

 

 is
somehow known, one can introduce it into the frame-
work of the ground level wavelike description (i.e., the
Hamiltonian) of the entity in hand right next to 

 

h

 

2

 

 and,
based on Assertion 1 stated in Part 1, as we will detail
soon, determine the eigenvalue and the characteristic
length delineated by the resulting formulation. How-
ever, there is a peculiarity.

Equation (2), in the simple case of the hydrogen
atom, shall (with the usual notation) be written as

 

(3a)

 

(written for the hydrogen atom); here, 

 

E

 

n

 

 is as usual the
total energy of the 

 

n

 

th electronic state of the hydrogen
atom, 

 

R

 

n

 

 is the corresponding characteristic size, and 

 

n

 

is the principal quantum number. In the case of the
hydrogen atom, 

 

g

 

IN

 

 is unity regardless of 

 

n

 

. Thus, in this
case, (i) 

 

g

 

IN

 

 in effect assumes the value of unity in the
ground state but also (ii) 

 

g

 

IN

 

 remains the same at all
electronic levels.

 

2

 

Any excited eigenstate shall obviously involve quantum numbers.
But, here, we are particularly interested in electronic excited
eigenstates.

EnmeRn
2
gIN h

2∼

8π2
EngINmeRn

2
n

2
h

2
, gIN 1= =

Neither property holds for systems of higher com-
plexity, although, as we have shown, an equation simi-
lar to Eq. (1) can well be written for any diatomic mol-
ecule or, further, any wavelike entity. Nonetheless, we
propose to achieve the equality induced by Eq. (2) for a
diatomic molecule (following Eqs. (A.3) and (A.4) of
the Appendix of Part 1) as framed by Eq. (3a); i.e.,

(3b)

(written for a diatomic molecule). Since gIN appears to
be purely related to the electronic structure of the entity
in hand, we expect it to remain the same for alike elec-
tronic configurations and, thus, for electronic states
configured similarly.

However, as one jumps from the ground state of a
complex system, such as that of a diatomic molecule, to
an excited state of this entity, it is not obvious that the
electronic configuration will stay the same; in fact, gen-
erally, it will not. Take, for instance, the hydrogen mol-
ecule. Its excited electronic states a priori will not bear
the same electronic configuration as that of the ground
state unless the two electrons are excited in complete
symmetry. Even then, the shielding effects may not be
the same. This is the peculiarity we wanted to clarify.
Thus, as the molecule jumps from its ground state to an
excited state, in general, it is not only that h2 should be
multiplied within the framework of the wavelike
description by the appropriate composite quantum
number but also that we should further represent the
change that takes place in the electronic structure. This
can, fortunately, be taken care of by a corresponding
change in the coefficient gIN of Eq. (3b).

Thereby, we can conceive an excited electronic state
as being achieved in two steps:

(1) a switch of the ground state electronic configura-
tion to a new configuration by just a change in gIN;

(2) a jump from this configuration to a new quantum
state bearing the same configuration.

WORKING OUT THE PRODUCT OF QUANTUM 
NUMBERS FOR SIMILARLY CONFIGURED 

ELECTRONIC STATES
For electronic states configured like the ground

state, we expect that gIN will remain the same. Such an
excited state should obey Eq. (3b), along with the quan-
tity n1n2 = N, made up of the product of the principal
quantum numbers of the bond electrons multiplying h2.
Below, we will call N the composite quantum number.
This yields the content of the following assertion,
related to the formulation of excited electronic states.

Assertion 1. In the case in which the atomic or
molecular wavelike object in hand, in a given electronic
state, assumes the composite quantum number N, then
the eigenvalue and the characteristic length associated
with this state become the output of the formulation one

8π2
EngINmeRn

2
n1n2h

2
,=

gIN 1≠
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obtains by multiplying h2 by N in the framework of the
ground state description, provided that the two states
are configured similarly.

Therefore, the introduction of appropriate quantum
numbers into Eq. (3b) in front of h2 (within the frame-
work of the wavelike description) in order to describe
the excited electronic eigenstates of the molecule, as
complex as these may be, appears to be the standard
procedure for the simplest wavelike objects such as the
hydrogen atom (cf. Eq. (3a)), provided that the two
states are configured similarly. We can predict the solu-
tion of the new setup through Assertion 1 of Part 1; this
can indeed be obtained based on a reformulation of this
assertion since, evidently, multiplying h2 by a given
number and dividing the masses involved by the Hamil-
tonian are mathematically identical operations.

Thus, we establish our next assertion, related to the
solution of the description of an excited electronic level
of the wavelike object in hand.

Assertion 2. In a real wavelike ground description,
if, with the aim of expressing an excited eigenstate, h2

is multiplied by the composite quantum number N,
then, concurrently, (i) the magnitude of the total ground
energy E0 associated with the given wavelike object is
decreased by as much to become E, the new eigenvalue,
and (ii) the corresponding ground state size R0 stretches
by as much to become R, the new size, provided that the
two states are configured similarly; in mathematical
terms, this is

(4)

Note that Assertion 2 holds for any excited eigen-
state (rotational, vibrational, electronic, or other). This
assertion, for excited states of the molecule configured
like the ground state, yields at once

(5a)

(the composite quantum number of the excited eigen-
states in the case in which they are configured like the
ground state). This assertion, interestingly, holds no
matter how complex the molecule may be.

Accordingly, we establish our next assertion.
Assertion 3. The composite quantum number to be

associated with an excited eigenstate is merely the ratio
of the size the object displays in this excited state to the
size the object displays in the ground state provided that
the two states are configured similarly.

Assertion 3 can be checked right away for the elec-
tronic states of the hydrogen atom. It is amazing that it
holds for any object and for any excited eigenstate the
object may involve (provided that the eigenstate of con-
cern is configured like the ground state). One can also

h
2

Nh
2[ ]

⇒ E0 E = 
E0

N
----- R0 R = NR0[ ],

 
 
 

.

N R/R0=

retrieve the following expected relationship from
Eq. (4):

(5b)

This yields the following assertion.
Assertion 4. The composite quantum number is the

inverse of the eigenvalue related to this eigenstate,
where the ground state energy is normalized to unity.

WORKING OUT THE QUANTUM NUMBERS 
FOR EXCITED STATES NOT CONFIGURED 

LIKE THE GROUND STATE

What if the electronic structure of the excited state
is not the same as that of the ground state? The answer
is, promisingly, not complicated. Indeed, since the
coefficient gIN in Eq. (2) comes to multiply the mass of
the electron, which happens to be the only mass
involved in the description of the electronic motion of
the diatomic molecule, any change in gIN can evidently
be represented by a corresponding hypothetical change
in the mass of the electron. If, further, we are concomi-
tantly to consider the change due to the introduction of
a composite quantum number N related to the excited
eigenstate in question (configured in a different way
than the ground state), then, on the basis of Eq. (3b),
this state can be described well by merely altering
h2/me in the framework of the ground state of the mol-
ecule by the coefficient N(gIN)initial /(gIN)final , where the
subscripts “initial” and “final” refer, respectively, to
the ground state and the excited electronic state under
consideration.

The ultimate output can be established right away
via Assertions 1 and 2 stated in Part 1, as framed in the
following assertion.

Assertion 5. The ratio of the size that a diatomic
molecule displays in an excited state to the size it dis-
plays in the ground state is equal to N(gIN)initial /(gIN)final ,
i.e., the composite quantum number to be associated
with the excited state multiplied by a coefficient, the
inverse of which quantifies how much the ground state
electronic configuration is altered overall.

Note that the use of Eq. (5a) along with Eq. (1)
requires that the coefficient g not be altered as the mol-
ecule passes from its ground level to the given excited
electronic state, to allow plotting of T, the classical
vibrational period in the given excited electronic state,
versus N–1/2R2, where R is the size of the molecule in
this eigenstate.

THE DISCLOSURE OF THE EMPIRICAL 
RELATIONSHIP ωr2 = CONSTANT

AND THE COMPLETE SET OF H2 ELECTRONIC 
VIBRATIONAL DATA

Recall that the following approximate empirical
relationship, evoking very much Eq. (1), was estab-

N E0/E.=
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lished for a given diatomic molecule back in 1925 yet
until now not understood [4–8]:

(6)

(an approximate relationship written in 1925 for the
electronic states of a given molecule), here ω is the
classical vibration frequency related to a given elec-
tronic state of the molecule and r is the corresponding
internuclear distance. The empirical constant is then to
be determined separately for each diatomic molecule.
Equation (6) bears the same meaning as Eq. (1) as far
as the dependence of the vibrational period on the inter-
nuclear distance is concerned; however, it does not
include the quantum numbers.

Equation (1), together with Assertion 3, suggests
that we should consider the relationship

(7)

(the relationship written for the classical vibrational
period of excited electronic states of a given molecule),
where r0 is the internuclear distance in the very ground
state; T is the inverse of ω; and, as usual. r/r0 in the
above relationship, following Assertion 3, is the com-
posite quantum number associated with the electronic
state under consideration. However, in order to better
display the structure of the interrelation between T, �0,

and r, we will not incorporate  with r2 and will
keep Eq. (7) as it is wherever this is more explanatory.

Equation (7) implies that, for any molecule whose
electronic states bear similar configurations for which g

ωr
2

empirical constant≈

T
4π2

h r/r0

---------------- g�0mer
2

=

1/r

remains about the same, the plot of T2 versus r3 should
be a straight line.

The approximate empirical constant of Eq. (6) can
now be evaluated from Eq. (7) as

(8)

recalling that N is the composite quantum number, i.e.,
r/r0 (staying indeed roughly the same where r is not far
from r0), which means that the constant in question is
indeed only approximately a constant, and supposing
that the electronic states in question are configured sim-
ilarly, so that g stays practically constant throughout.
This entirely discloses the mechanism behind the
approximate empirical relationship, Eq. (8), established
back in 1925.

Thus, Eq. (8) means that it is not really the quantity
ωr2 that is a constant for electronic states of a given
molecule configured similarly but, on the basis of
Eq. (7), more likely, it is the quantity

(9)

(written by the author for electronic states of a given
molecule configured similarly); this new constant then
is

(10)

(written by the author for electronic states of a given
molecule configured similarly). Recall that r0 domi-
nates the internuclear distance in the ground state.
Although r0 is also a constant for the given molecule,
we still choose to keep it on the right-hand side of
Eq. (9) to let the dimension of the new constant be the
same as that of the classical empirical constant ωr2 to
enable comparison between these two quantities (cf.
the right-hand side of Eq. (8)).

As an example, T2 versus (r0/r)r4 for the H2 mole-
cule is sketched in Fig. 1. Thus, some 23 states out of
the 29 for which data is available are neatly aligned.

Herein, we included , which too seems to display
the same g as that of the H2 ground state; we find g ≈
0.8. The remaining six electronic excited states of H2
seem to be configured differently. We call these
“ambiguous states” (the previous “unambiguous” 23
being seemingly all configured more or less like the
ground state of the molecule).

To analyze the remaining six data (out of 29), we
note, from Eq. (1), that switching the nuclear reduced
mass �0 of alkali molecules or alkali hydrides to that
of the hydrogen molecule should virtually transpose the
corresponding vibrational period into the vibrational

empirical approximate constant

=  
Nh

4π2
g0�0me

--------------------------------- ωr
2
,=

constant ω
r0

r
----r

2
=

constant h

4π2
g�0me

-------------------------------=

H2
+

0.4

4

T 2 × 106 c2, cm2

(1/(r/r0))r4, Å4
8

0.8

0

1.2

12

Li2
E

LiHE

NaHE
KHE

CsHE
RbHE

Fig. 1. T2 versus r0r3 for different electronic states of H2
(the states corresponding to experimental data off the
straight line, denominated by the superscript “E,” have been
identified to be configured as indicated, like the ground
states of, respectively, alkali hydrides and Li2).
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period of the H2 electronic state of the same electronic
character. Recall that switching the nuclear mass prac-
tically does not affect the electronic structure of the
molecule, and, accordingly, we should expect that,
amongst the H2 electronic states, there are states config-
ured like the ground electronic states of alkali mole-
cules and alkali hydrides. Therefore, we anticipate that
the six ambiguous electronic states of H2 should be con-
figured just like the corresponding ground electronic
states of alkali molecules and alkali hydrides and vice
versa [9].

SYSTEMATIZATION OF THE GROUND STATES 
OF ALL DIATOMIC MOLECULES

In the light of the foregoing discussion, we recall
Eq. (15b) of Part 1 (written regarding the ground states
of diatomic molecules belonging to a chemical family),
which we considered in conjunction with Eq. (15a)
(written regarding the electronic states of a given
diatomic molecule). Hence, we rewrite Eq. (7) (or the
same, Eq. (15a) of Part 1), now, not for the excited lev-
els of a given molecule, but for the ground states of
molecules belonging to a given chemical family and,
accordingly, being configured alike:

(11)

(written by the author for the classical vibrational
period of the ith member molecule of a given chemical
family), where T0i is the ground state largest vibrational
period of the ith member molecule of the chemical fam-
ily under consideration; �0i is the reduced mass; r0i is
the ground state internuclear distance of this member;

T0i
4π2

h n1n2

------------------ g�0ir0i
2

 Eq. (15b)( ),=

n1n2
r0i

r00
------=

and r00 is the internuclear distance of the ground state
of the family member chosen as the reference mole-
cule; here, we choose the member bearing the lowest
vibrational period. Therefore, T0i versus

 for chemically alike molecules
should display a linear behavior, the slope of which
shall furnish g to be associated with the chemical fam-
ily under consideration.

Thus, we can now write an equation similar to
Eq. (9) in regard to the ground states of molecules
belonging to a given chemical family:

(12)

(written by the author for the ground states of chemi-
cally alike molecules), where ω0i is the inverse of the
ground state classical vibrational period of the mole-
cule of concern. Thus, the constant in question shall be
expressed as

(13)

However, we still keep the constant r00 in the right-hand
side of Eq. (12) so as not to have to alter the dimension
of the constant in question.

In Figs. 2–8, based on experimental data [10, 11],

we present T0i versus  for eight chem-
ical families for which the coefficient g indeed stays

neatly constant. The constancy of ,
in harmony with Eqs. (3) and (4), is quantitatively dem-
onstrated in the fifth columns of Tables 1–7.

�0ir0i
2

/ r0i/r00

constant
ω0i �0ir0i

2

n1n2

---------------------------
ω0i �0ir0i

2

r0i/r00

---------------------------= =

constant
h

4π2
gme

----------------------.=

�0ir0i
2

r00/r0i

ω0i �0ir0i
2

r00/r0i

10

40

T0 × 103 c, cm

(1/(r0/r00)1/2
80

20

0

30

Cs2

RbCsRb2

KRb
K2

NaK
Na2

LiNa
Li2
H2

, amu1/2 Å2�0
1/2

r0
2( )

Fig. 2. Period of alkali molecules versus

(1/(r0/r00)1/2)( ), r00 is the internuclear distance of H2.�0
1/2

r0
2

2

20

T0 × 103 c, cm

40

4

0

SO

Te2

S2

Se2

O2

(1/(r0/r00)1/2 , amu1/2 Å2�0
1/2

r0
2( )

Fig. 3. Period of (O2, S2, Se2, Te2) versus

(1/(r0/r00)1/2)( ), r00 is the internuclear distance of O2.�0
1/2

r0
2
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The values g are calculated from Eq. (4) for different
chemical families and are presented in Table 8. Note
that g vary between 0.4 and 0.01.

Recall that, according to Eqs. (3) and (4), the value

of the constancy of  depends on
both g and r00 (the reference internuclear distance of the
family of concern), which makes the constants calcu-
lated in the fifth columns of Tables 1–7 differ.

Note further that the standard deviation of the con-
stants in question is roughly 10%. There seem to be two
reasons for this. The first one is that chemically alike

ω0i �0ir0i
2

r00/r0i

molecules, contrary to our assumption, are not exactly
configured similarly, which may indeed mean that g
does not remain constant throughout. The second rea-
son is that n1n2 (cf. Eq. (2)) for chemically alike mole-
cules (where we choose the molecule with the lowest
vibrational period as the reference molecule) may not
be considered rigorously equal to r0i/r00.

Along this line, it is of interest to recall that, when
we use the principal quantum numbers associated with
the bound electrons directly (i.e., with no quantum
defects) to compose n1n2 instead of using Eq. (2), we

come out with the constancy of ,ω0i �0ir0i
2

n1n2

0.4

4

T0 × 104 c, cm

8

0.8

0

P2

N2

PN

1.2

(1/(r0/r00)1/2 , amu1/2 Å2�0
1/2

r0
2( )

Fig. 4. Period of (N2, PN, P2) versus

(1/(r0/r00)1/2)( ), r00 is the internuclear distance of N2.�0
1/2

r0
2

20

20

T0 × 104 c, cm

40

40

0

ClF

I2

Cl2

Br2

F2

BrF

ICl

(1/(r0/r00)1/2 , amu1/2 Å2�0
1/2

r0
2( )

Fig. 5. Period of diatomic molecules made of combinations

of halogen atoms versus (1/(r0/r00)1/2)( ), r00 is the

internuclear distance of F2.

�0
1/2

r0
2

20

20

T0 × 104 c, cm

40

40

0

KF

40

NaCl NaBr

KCl

NaI
RbCl

KBr
KI

(1/(r0/r00)1/2 , amu1/2 Å2�0
1/2

r0
2( )

Fig. 6. Period of different alkali–halogen molecules versus

(1/(r0/r00)1/2)( ), r00 is the internuclear distance of KF.�0
1/2

r0
2
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T0 × 104 c, cm

60

40
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80
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TlCl

AlCl

InI

40

BCl
BBr

AlBr

TlI

TlBr

InCl

(1/(r0/r00)1/2 , amu1/2 Å2�0
1/2

r0
2( )

Fig. 7. Period of diatomic molecules made of atoms belong-
ing to, respectively, the third and seventh columns of the

periodic table versus (1/(r0/r00)1/2)( ), r00 is the

internuclear distance of BF.

�0
1/2

r0
2
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which happens not to be any worse than that of

 (cf. Eq. (3)) [7, 8].

In the Appendix of Part 1, we predicted that the
inverse of g somewhat characterizes the strength of the
bond of concern. As one can observe from Table 1, g
indeed decreases as the bond becomes stronger. Thus,
the higher the number of covalent bonds forming the
overall bond of the diatomic molecule, the smaller g
will be. Alternatively, the higher the number of free
electrons an atom possesses, the looser the bond it will
form with say, a halogen, will be and, thus, the higher
g, etc. [12].

ω0i �0ir0i
2

r00/r0i

DISCUSSION

Recall the usual definition of the classical vibra-
tional period, in terms of the reduced mass �0 and the
force constant k, in the given electronic state:

(14)

(the classical vibrational period in the given electronic
state). Equating the right-hand side of this equation
with that of Eq. (11) yields

(15)

(the force constant written by the author for the ground

state of the ith member of the given family). The 
dependence of ki is somewhat trivial if one proposes to
relate it to the internuclear distance. This correlation
was, in effect, proposed some time ago by Bratoz et al.
for alkali hydrides [13, 14].

The proportionality constant Ce2, where e is the
electron charge, was subsequently obtained by Salem
and Ohwada [15, 16] on the basis of empirical pre-
sumptions, chiefly for molecules containing alkali
atoms; more specifically, C is approximately deter-
mined to be

(16)

where Ni and Nj are the respective numbers of electrons
residing outside of the complete shells of the atoms
making up the diatomic molecule.

Recall, however, that, in order to obtain our results
above, we followed a totally different path than that
empirically inspired by Eq. (8). Moreover, we arrived at
our result primarily for electronic states of a given mol-

T 2π �0/k Eq. (8) of Part 1( )=

ki
h

2

4π2
gmer0i

3
r00

--------------------------------=

r0i
3–

C
1
2
--- Ni 1+( ) N j 1+( ),=

10

10

T0 × 104 c, cm

20

20

0

CO
CS

SiO

30

GeO
SnO

PbO
SiS

PbS

(1/(r0/r00)1/2 , amu1/2 Å2�0
1/2

r0
2( )

SnS

Fig. 8. Period of diatomic molecules made of atoms belong-
ing to, respectively, the fourth and sixth columns of the peri-

odic table versus (1/(r0/r00)1/2)( ), r00 the is internu-

clear distance of CO. 

�0
1/2

r0
2

Table 1.  Checking the end result for alkali molecules

Molecules �0, amu T0 (cm–1 × 103 c) r0, Å Relative error as referred 
to the average

H2 0.50 0.24 0.74 0.62 0.29
Li2 3.50 2.89 2.67 0.40 0.15
LiNa 5.33 3.89 2.90 0.40 0.17
Na2 11.50 6.34 3.08 0.40 0.15
NaK 14.48 8.06 3.50 0.37 0.22
K2 19.49 10.80 3.92 0.37 0.22
KRb 26.83 13.2 4.07 0.36 0.24
Rb 42.47 17.3 4.21 0.36 0.24
RbCs 52.04 20 4.42 0.35 0.27
Cs2 66.47 23.8 4.64 0.34 0.29
Average 0.40 0.22

Note that, here and in Tables 2–8, c is the speed of light in cm/s.

T0 r0/r00

�0r0
2

------------------------
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Table 4.  Checking the end result for halogens

Molecules �0, amu T0 (cm–1 × 104 c) r0, Å Relative error as re-
ferred to the average

F2 11.21 9.50 1.44 1.37 0.05
Cl2 17.96 17.49 1.99 1.22 0.15
Br2 31.15 39.96 2.28 1.70 0.18
I2 46.87 63.47 2.67 1.78 0.24
BrF 15.04 15.35 1.76 1.4 0.28
ClF 12.93 12.31 1.63 1.37 0.05
ICl 26.23 27.42 2.32 1.26 0.13
Average 1.44 0.15

T0 r0/r00

�0r0
2

------------------------

Table 2.  Checking the end result for O2-like molecules

Molecules �0, amu T0 (cm–1 × 103 c) r0, Å Relative error as referred 
to the average

O2 8.00 0.64 1.21 0.15 0.17
S2 15.99 1.39 1.89 0.12 0.06
Se2 39.97 2.56 2.16 0.12 0.06
Te2 63.82 4.00 2.59 0.11 0.14
SO 10.67 0.90 1.49 0.14 0.09
Average 0.13 0.10

T0 r0/r00

�0r0
2

------------------------

Table 3.  Checking the end result for N2-like molecules

Molecules �0, amu T0 (cm–1 × 103 c) r0, Å Relative error as re-
ferred to the average

N2 7.00 0.43 1.09 0.13 0.08
P2 15.49 1.29 1.89 0.11 0.08
PN 9.65 0.76 1.49 0.11 0.00
Average 0.12 0.05

T0 r0/r00

�0r0
2

------------------------

Table 5.  Checking the end result for CsBr-like molecules

Molecules �0, amu T0 (cm–1 × 104 c) r0, Å  Relative error as referred 
to the average

CsBr 52.63 49.92 3.14 1.02 0.52
CsI 71.63 64.94 3.41 1.00 0.5
NaCl 26.46 13.95 2.51 0.56 0.17
NaBr 31.98 17.86 2.64 0.60 0.09
NaI 35.15 19.45 2.90 0.54 0.19
KF 25.64 12.78 2.55 0.51 0.24
KCl 35.95 18.59 2.79 0.55 0.17
KBr 43.55 26.26 2.94 0.65 0.02
KI 47.48 29.89 3.23 0.61 0.09
RbCl 39.53 25.07 2.89 0.66 0.00
Average 0.67 0.20

T0 r0/r00

�0r0
2

------------------------
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Table 7.  Checking the end result, for CO-like molecules

 Molecules �0, amu T0 (cm–1 × 104 c) r0, Å
 Relative error as re-
ferred to the average

CO 4.67 6.86 1.13 2.48 0.46

CS 7.86 8.73 1.53 1.55 0.08

SiO 8.13 10.18 1.51 1.81 0.07

SiS 13.43 14.93 1.93 1.43 0.16

GeO 10.23 13.15 1.65 1.83 0.08

SnO 12.27 14.09 1.84 1.51 0.11

SnS 20.62 25.25 2.06 1.77 0.06

PbO 14.00 14.85 1.92 1.40 0.17

PbS 23.49 27.72 2.39 1.46 0.14

Average 1.69 0.15

T0 r0/r00

�0r0
2

------------------------

Table 8.  Bond looseness factors of  chemically alike diatomic molecules

Chemical family  = Bond looseness factor 
(g)

H2, Li2, Na2, K2 4.00* 0.34

CO, CS, SiO, SiS, GeO, SnO, SnS, PbO, 
PbS

1.69 0.06

F2, Cl2, Br2, I2, BrF, ClF, ICl 1.44 0.04

O2, S2, Se2, Te2, OS 1.30 0.04

N2, P2, PN 1.20 0.03

BF, BCl, BBr, AlCl, AlBr, InCl, 1.15 0.03

NBr, InI, TlCl, TlBr, TlI, CsF, CsBr, CsI, 
NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl

0.67 0.01

* Note that this value appears to be ten times greater than the corresponding one present in Table 1 simply because we adjusted T0 of Table 1,

which we multiplied by 10–3, to T0, which we multiplied by 10–4, through Tables 4–7; the same holds for the corresponding values we
picked from Tables 2 and 3.

T0 r0/r00

�0r0
2

------------------------ cm 1– 104 c×
amuÅ2

-------------------------------
 
 
  4π2 gme

h
-----------------------

Table 6.  Checking the end result, for BF-like molecules

Molecules �0, amu T0 (cm–1 × 104 c) r0, Å Relative error as re-
ferred to the average

BF 7.26 6.72 1.26 1.44 0.69

BCl 12.06 8.38 1.72 0.88 0.03

BBr 14.77 9.66 1.88 0.80 0.06

AlCl 20.95 15.24 2.13 0.88 0.03

AlBr 26.64 20.11 2.29 0.92 0.08

InCl 31.71 26.82 2.31 1.11 0.3

InI 56.72 60.32 2.86 1.36 0.59

TlCl 35.09 29.87 2.55 1.02 0.19

TlBr 52.27 57.98 2.68 1.50 0.76

TlI 66.67 78.31 2.87 1.61 0.89

Average 1.15 0.36

T0 r0/r00

�0r0
2

------------------------
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ecule. The literature we reviewed does not deal at all
with this aspect.

Note further that recent trials on the problem of
transferable spectroscopic constants, despite satisfac-
tory results they may furnish, are far from displaying
how the fundamental quantities of mass, space, and
time (i.e., clock mass, clock size, and period of time of
the clock motion) are structured in interrelation with
each other in the architecture of molecules [17]—in
fact, just the way our Eqs. (1) and (2) reveal.

CONCLUSIONS
It was an original idea of the author that, owing to

the end results of the special theory of relativity, as well
as those of the general theory of relativity, the space
size, the clock mass, and the period of time to be asso-
ciated with any real wavelike object ought to be orga-
nized in exactly a given manner; i.e., (period of time) ~
(clock mass)(space size)2; we call this occurrence the
universal matter architecture relation or, in short, the
UMA relation.

In this work, we were able to demonstrate the occur-
rence in question concerning the vibrational structure
of a diatomic molecule in regard to either the electronic
states of a given molecule configured alike or the
ground states of molecules belonging to a given chem-
ical family (and, thus, practically configured similarly).

Our approach led us to the derivation of an empirical
relationship known since 1925 but not understood until
now, as well as to a new systematization of diatomic
molecules. Thus, our approach reveals the simple archi-
tecture of diatomic molecules, otherwise hidden behind
a much too cumbersome quantum-mechanical descrip-
tion. This architecture, displaying how the vibrational
period of time, size, and mass are determined, is
Lorentz-invariant and can conversely be considered as
the mechanism of the behavior of the quantities in ques-
tion in interrelation with each other when the molecule
is brought into uniform translational motion or trans-
planted into a gravitational field or, in fact, any field
with which it can interact [18, 19].

ACKNOWLEDGMENTS
The author extends his profound gratitude to Profs.

V. Rozanov, N. Rosanov, and N. Veziro lu and to

Dr. X. Oudet; without their sage understanding and
encouragement, this controversial work would not have
seen the light of day. The author would further like to
warmly thank Drs. O. Sinano lu, C. Marchal,
E. Hasanov, ‹. Ko≥ak, V. Altin, S.B. Yarman, and
F. Yarman for very many hours of discussion, which
helped tremendously to improve the work presented
herein. Finally, the author thanks Research Assistant
F. Özayd¶n for kindly helping with the typing of the
manuscript and drawing the figures.

REFERENCES

1. T. Yarman, Opt. Spektrosk. 97 (5), 729 (2004) [Opt.
Spectrosc. 97, 683 (2004)].

2. G. Herzberg, Molecular Spectra and Molecular Struc-
ture (D. Van Nostrand Company, Inc., 1989), Vol. 1,
Chap. 6.

3. K. Nakamura and E. A. Solov’ev, J. Phys. B 36, 3695
(2003).

4. R. T. Birge, Phys. Rev. 25, 240 (1925).

5. R. Mecke, Z. Physics 32 (1925).

6. P. M. Morse, Phys. Rev. 34, 57 (1929).

7. C. H. D. Clark, Phys. Rev. 47, 238 (1935).

8. G. Herzberg, Molecular Spectra and Molecular Struc-
ture (D. Van Nostrand Company, Inc., 1989), Vol. 1,
Chap. 8.

9. T. Yarman, Int. J. Hydrogen Energy 29, 1521 (2004).

10. V. Spirko, O. Bludsky, F. Jenc, and B. A. Brandt, Phys.
Rev. A 48, 1319 (1993).

11. U. Diemer, H. Weickenmeier, M. Wahl, and W. Dem-
tröder, Chem. Phys. Lett. 104, 489 (1984).

12. N. Zaim, Ph.D. Thesis (supervised by T. Yarman)
(Trakya University (Turkey), 2000).

13. S. Bratoz, R. Daudel, M. Roux, and M. Allavena, Rev.
Molec. Phys. 32, 412 (1960).

14. S. Bratoz and G. Bessis, J. Chem. Phys. 56, 1042 (1959).

15. L. Salem, J. Chem. Phys. 38, 1227 (1963).

16. K. Ohwada, J. Chem. Phys. 75 (3), 1309 (1981).

17. L. von Szentpaly, J. Phys. Chem. A 102, 10912 (1998).

18. T. Yarman, DAMOP 2001 Meeting, APS, May 16–19,
2001, London, Ontario, Canada.

19. T. Yarman, Les Annales de la Fondation Louis de Broglie
(Paris) 29, 459 (2004).g(

g(


